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We explore two distinct families of orbital angular momentum carrying light beams, which we refer to as general-
ized elliptical Gaussian and elegant elliptical Hermite-Gaussian vortex beams, respectively. We show that the fields
of the two vortex families are related via a Fourier transform. Hence, one family can be viewed as a source of the far-
field intensity distribution of the other and vice versa. We also examine the orbital angular momentum evolution of
both beam families on their free space propagation and establish a relationship between the orbital angular momen-
tum, TC, and beam ellipticity factors. Our results may find applications to optical communications and imaging
with structured light. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAA.510096

1. INTRODUCTION

Optical fields with a Laguerre-Gaussian (LG) amplitude distri-
bution, carrying the orbital angular momentum (OAM), have
attracted immense interest within the optical community since
the pioneering work of Allen et al. on the OAM of LG modes
[1]. In the last 30 years, OAM has established itself as one of
the most interesting of optical modes, with relevance to optical
manipulation, imaging, quantum optics, optical communica-
tions, and elsewhere [2–4]. Phase singularities and OAM are
also characteristic of all optical vortices [5]. Random OAM
carrying optical fields have also been studied theoretically [6–8]
and experimentally [8,9]. Optical vortices, both coherent and
random, have found numerous applications, including neutral
particle micromanipulation [10], quantum and classical optical
entanglement and teleportation [11–13], super-resolution
imaging [3], and free-space optical communications [14].

Generalizations of LG beams have been presented to date. For
example, a symbiosis of LG and Hermite-Gaussian (HG) beams
has been proposed in [15] and termed Hermite-Laguerre-
Gaussian beams by introducing an additional parameter.
Adjusting the magnitude of the introduced parameter allows
a continuous transition between HG and LG beams, thereby
maintaining the salient properties of both beam families. In
addition, the transformation of a set of LG modes into a 1D
array of HG modes via the Talbot effect has been recently
reported [16]. Another extension of LG beams, known as struc-
tured Laguerre–Gaussian (sLG) beams, acquires fine structure

of their intensity distribution, OAM, and topological charge
(TC) [17,18].

Optical vortices with a fractional OAM and without circular
symmetry have been intensively studied recently [19]. There are
several methods for generating an optical vortex with fractional
OAM. For instance, it can be done by off-axis illumination of
a spiral phase plate by a Gaussian beam [20,21], or by using a
non-integer phase step spiral phase plate [22]. Asymmetric opti-
cal vortices with discrete crescent-shape intensity distributions
possess fractional orbital angular momenta as well [23–25].
Fractional orbital angular momenta compatible with continu-
ous light intensity distributions in the transverse plane can be
realized by generating elliptical vortices [26–30]. To this end,
the authors of Ref. [29] introduced the concept of an elliptical
Hermite-Gaussian vortex beam and evaluate its OAM. Further,
elegant elliptical Hermite–Gaussian (EEHG) vortex beams
were originally presented in [31], although their OAM content
was not studied. By the same token, elliptical optical vortices
embedded into circular Gaussian beams were examined in [30].
Forthwith, a more general case in which both the vortex and
the Gaussian beam are elliptical with different ellipticities was
discussed in [19] where the authors derived a simple formula for
its OAM. Hereafter, we refer to these more general light fields as
generalized elliptical Gaussian (GEG) optical vortices.

In this work, we study the GEG and EEHG vortex beam
evolution in free space. In particular, we demonstrate that GEG
and EEHG vortex sources form a Fourier transform pair. Our
results imply that one family can serve as a source for the far-field
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vortex intensity distribution given by the other and vice versa.
By defining two ellipticity factors for a GEG vortex, say εv and
εg , we show that, if the two factors are equal, the two beam
families have identical fields and, hence, are self-Fourier trans-
forms. We also establish that the OAM of any GEG vortex is
proportional to its TC and is a function of the ellipticity factors.
Since the far-field propagation of an EEHG vortex leads to the
generation of a GEG vortex and vice versa, we invoke the OAM
conservation on free-space propagation to determine the OAM
of an EEHG vortex beam from the knowledge of the GEG beam
OAM. We also obtain the EEHG OAM by a direct calculation.

The paper is organized as follows. In Section 2, we introduce
GEG and EEHG vortex fields and evaluate the OAM of the
GEG field as a function of its TC and the two ellipticity factors.
In Sections 3 and 4, we explore the near- and far-field evolution
of GEG and EEHG vortex fields, respectively. In Section 5,
we consider a particular case when both GEG and EEHG are
self-Fourier transforms, followed by our summary in Section 6.

2. GEG AND EEHG OPTICAL VORTICES

Consider a complex amplitude of a conventional optical vortex,
which can be written in the Cartesian coordinates as

ψl (r)=
(

x + i s y
w

)|l |
exp

(
−

x 2
+ y 2

w2

)
, (1)

where r= (x , y )= (r cos θ, r sin θ) is a position vector in
transverse plane, l is an integer that represents the topological
charge (TC) of the vortex, andw is a radial scale parameter such
thatweff =w

√
|l |/2 is an effective beam radius measured from

the dark center to the intensity peak of a doughnut-shaped
beam. Furthermore, s =±1 indicates the TC sign. We now
focus on the following generalized form of the optical vortex
field:

ψl (r)=
(

x
ax
+ i s

y
a y

)|l |
exp

[
−

(
x 2

w2
x
+

y 2

w2
y

)]
, (2)

which we hereafter refer to as a generalized elliptical Gaussian
(GEG) optical vortex. Here ax , a y , wx , and wy are transverse
length scales determining the ellipticity of the vortex field. Here
we define two ellipticity factors εv =

a y
ax

and εg =
wy
wx

for the
GEG vortices. We call the first one a vortex ellipticity and the
second one a Gaussian ellipticity.

The OAM and the total power of any paraxial light field
ψl (x , y ) can be expressed as [21,23,24]

J z = Im
∫
+∞

−∞

∫
+∞

−∞

ψ∗l (r)
(

x
∂

∂ y
− y

∂

∂x

)
ψl (r)dxdy ,

(3)

W =
∫
+∞

−∞

∫
+∞

−∞

ψ∗l (r)ψl (r)dxdy , (4)

where Im stands for the imaginary part of a complex field and
∗ denotes complex conjugation. The normalized OAM of the
field, `z, is defined as the ratio of J z to W , namely `z = J z/W . It
has been shown that substituting from Eq. (2) into Eqs. (3) and
(4) results in the normalized OAM in the following form [19]:

`z =
J z

W
= l

[
ax a y

(
w2

y −w
2
x

)
a 2

xw
2
y − a 2

yw
2
x

+
wxwy

(
a 2

x − a 2
y

)
a 2

xw
2
y − a 2

yw
2
x

Pl−1(α)

Pl (α)

]
,

(5)
where Pl (α) is a Legendre polynomial of order l and

α =

(
wxwy

2ax a y

) [(
ax

wx

)2

+

(
a y

wy

)2
]

. (6)

It follows that, in sharp contrast to the OAM and TC of a
conventional vortex field, defined by Eq. (1), the corresponding
quantities for the GEG are not equal to each other, `z 6= l . We
express the normalized OAM of the GEG as a function of two
dimensionless ellipticity factors, εv and εg , instead of the length
parameters ax , a y , wx , and wy . Therefore, we can cast Eqs. (5)
and (6) into the following form:

`z =
l

ε2
g − ε

2
v

[
εv
(
ε2

g − 1
)
− εg

(
ε2
v − 1

) Pl−1(α)

Pl (α)

]
, (7)

α =
ε2

g + ε
2
v

2εvεg
. (8)

We note that Eq. (7) is not directly applicable in the particular
case of εv = εg . We discuss this case separately in Section 5.
Using Eqs. (5) and (7), we determine the ratio of normalized
OAM to the TC, `z/l , as a function of εv and εg . We exhibit the
results in Fig. 1. We can infer from the figure that, depending on
the values of εv and εg , there exist three different cases: `z/l < 1,
`z/l > 1, and `z/l = 1, or equivalently `z < l , `z > l , and
`z = l .

We now present a concise review of the elegant elliptical
Hermite-Gaussian (EEHG) optical vortices, originally intro-
duced in Ref [31]. The complex amplitude of an EEHG vortex
field at the source, z= 0, can be expressed as

Fig. 1. (a) and (b) Ratio of the normalized OAM to topological
charge, `z/l , in terms of εv and εg for the GEG optical vortices in two
different scales. (c) and (d) The corresponding contour graphs.
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Fig. 2. Intensity (first, third, and fifth rows) and the corresponding phase (second, fourth, and sixth rows) profiles of EEHG vortex fields with
λ= 532 nm, n = 3, and s =+1 at z= 0. The beam waist is fixed at px = 1 mm, and the parameters a and ε are varied.

ψn(r, 0)= e
−

(
x2

p2
x
+

y 2

p2
y

)
n∑

m=0

(
n
m

)
(−i s a)m

× Hm

(
x
px

)
Hn−m

(
y
p y

)
, (9)

which is a linear combination of elegant Hermite Gaussian

beams with complex coefficients, where n is the absolute value

of topological charge and s =±1 indicates its sign. Further,
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(
n
m

)
=

n!
m!(n−m)! are binomial coefficients, a is a real positive

parameter, and px and p y are the spot sizes of elliptical Gaussian
beam waist along the x - and y -axes, respectively. We note that
ε=

p y
px

can be viewed as the ellipticity factor of an EEHG and
the special case of a = ε was considered in [31]. We show that a
and ε are key parameters that characterize the intensity profile
and OAM of an EEHG. Under the condition a 6= 1, Eq. (9) can
be rewritten as

ψn(r, 0)=
(
1− a2)n/2

exp

[
−

(
x 2

p2
x
+

y 2

p2
y

)]

× Hn

[
−i s a(x/px )+

(
y/p y

)
√

1− a2

]
, (10)

with the help of Eq. (A2). We discuss the special case a = 1 in
Section 5. In Fig. 2, we display the intensity and phase profiles of
an EEHG vortex field with px = 1 mm for different values of a
and ε in the source plane z= 0. The parameters a and ε strongly
affect the intensity and phase profiles of the EEHG. The inten-
sity profile is a horizontal ellipse when ε < 1 and a vertical ellipse
when ε > 1. Whenever ε= 1, the ellipse orientation depends
on a as we show in the second column of Fig. 2. The parameter
a is also crucial—it determines the number and location of the
intensity nulls. As long as a < 1 and a > 1, there are n nulls with
TC= s on the y axis and x axis, respectively. Provided a = 1, all
nulls merge into one at the origin, corresponding to TC= s n.

3. NEAR- AND FAR-FIELD PROPAGATION OF
GEG OPTICAL VORTICES

First, we examine the evolution of GEG optical vortices in free
space in the near-field regime. Consideringψ(r′, 0) as the com-
plex amplitude of a paraxial, quasi-monochromatic optical field
at z= 0, the complex amplitude of the field in any transverse
plane z= const≥ 0 is, in general, given by the Fresnel integral:

ψ(r, z)= h
∫
∞

−∞

∫
∞

−∞

ψ(r′, 0)e
iα
[
x ′2+y ′2−2(x x ′+y y ′)

]
dx ′dy ′,

(11)
whereα = π

zλ ,λ is the wavelength of light, and

h =
1

iλz
exp
(
ikz+ iαr 2) , (12)

where k = 2π
λ

is a wavenumber, and r =
√

x 2 + y 2 is radial
distance from the z-axis. Employing the binomial expansion,
the complex amplitude of a GEG vortex beam at z= 0, given by
Eq. (2), can be transformed to

ψl (r, 0)=

(
i

a y

)|l |
e
−

(
x2

w2
x
+

y 2

w2
y

)
|l |∑

m=0

(
|l |
m

)
(−i s εv)m x m y |l |−m,

(13)
where εv =

a y
ax

. On substituting this complex amplitude into
Eq. (11), and using the following reference integral [32],

∫
+∞

−∞

ume−(Au2
+Bu)du

=
√
π

(
i
2

)m

A−(m+1)/2e B2/(4A)Hm

(
i B

2
√

A

)
, (14)

and introducing

1

β2
x
=

1

w2
x
− i

π

zλ
=

1

w2
x

(
1− i

z0x

z

)
, (15a)

1

β2
y
=

1

w2
y
− i

π

zλ
=

1

w2
y

(
1− i

z0y

z

)
, (15b)

we obtain the expression

ψl (r, z)= c l e
−α2

(
β2

x x2
+β2

y y 2
) |l |∑

m=0

(
|l |
m

)
(−i s a(z))m

× Hm(αβx x ) H|l |−m
(
αβy y

)
. (16)

Here, c l = πh( s βy
2a y
)|l |βxβy , a(z)= a y βx

axβy
. Further, z0x =

πw2
x

λ

and z0y =
πw2

y
λ

are the Rayleigh lengths associated with the
transverse confinement along the x and y axes, respectively, and
z0 =max{z0x , z0y } is an effective Rayleigh length. We define
the latter as a distance from the beam waist plane over which
the beam radius increases by the factor of

√
2. With the aid of

Eq. (A2), Eq. (16) can be rewritten in a closed form as

ψl (r, z)= c l
(
1− a2(z)

)|l |/2
e
−α2

(
β2

x x2
+β2

y y 2
)

× H|l |

[
−i s a(z)αβx x + αβy y√

1− a2(z)

]
. (17)

The first and second rows of Fig. 3 respectively show
the intensity and phase profiles of the GEG beams hav-
ing λ= 532 nm, l = 3, wx = ax = 0.2 mm, and different
ellipticity factors at z= 0. We exhibit the near-field evo-
lution of these beams at z= 50 cm in the third and fourth
rows of the figure. It can be inferred from the figure that
the central dark notch splits into a few secondary ones with
unit topological charges so that the number of secondary
notches equals the topological charge of the source GEG
vortex (see Visualization 1, Visualization 2, Visualization 3,
Visualization 4, Visualization 5, and Visualization 6).

Next, we study the far-field propagation properties of the

field. As z is increased to the point such that π(x
′2
+y ′2)max
λz � 1,

the termα(x ′2 + y ′2) can be ignored in Eq. (11), leading to

ψ(r, z)= hψ̃
(

x
λz
,

y
λz
, 0

)

= h
∫
+∞

−∞

∫
+∞

−∞

ψ(r′, 0)e−2iα(x x ′+y y ′)dx ′dy ′, (18)

where ψ̃(ξ, η, 0) denotes the Fourier transform of ψ(x , y , 0)
or the spatial spectrum of the complex amplitude distribution at
the input plane. We note in passing that sometimes h is replaced
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Fig. 3. Near- and far-field evolution of GEG beams with λ= 532 nm, l = 3,wx = ax = 0.2 mm, and different ellipticity factors. The first, third,
and fifth rows show intensity profiles, and the second, fourth, and sixth rows illustrate the corresponding phase profiles. The seventh row exhibits the
same profiles as the sixth row, where we dropped the overall phase factor h (see also Visualization 1, Visualization 2, Visualization 3, Visualization 4,
Visualization 5, and Visualization 6).

by h0 =
exp(ikz)

iλz in Eq. (18) by neglecting the quadratic phase
exp(iαr 2) in Eq. (12). This approximation is only justified
if we limit our interest to the points in the observation plane
within a circle of radius R centered around the z-axis so that
αR2
=

π R2

λz � 1 [33,34]. On the other hand, the size of a
diffracted light beam in the far-field region increases roughly lin-
early with z, comparing capture sizes in different rows of Fig. 3
and also Fig. 4. Therefore, the condition π R2

λz � 1 can break
down for sufficiently large z, and replacing h with h0 is no longer
justified. This approximation can then lead to the erroneous
conclusion that “the complex amplitude of a diffracted wave
field in the far zone of the source is simply proportional to the
Fourier transform of the field amplitude at the source.” Strictly

speaking, only the far-zone intensity distribution is proportional
to the square of the absolute value of the Fourier transform of
complex amplitude distribution at the source plane.

On substituting from Eq. (13) into Eq. (18) and using
Eq. (14), we arrive at

ψl (r, z)= c l e
−α2

(
w2

x x2
+w2

y y 2
) |l |∑

m=0

(
|l |
m

)
(−i s a)m

× Hm(αwx x ) H|l |−m
(
αwy y

)
, (19)

where c l = πh( swy
2a y
)|l |wxwy and a = εv

εg
. For the case εv 6= εg

(a 6= 1), we can employ Eq. (A2) to reduce Eq. (19) to
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Fig. 4. Near- and far-field evolution of EEHG fields with λ= 532 nm, n = 3, s =+1, and px = 0.2 mm for different parameter values: a and ε.
The first, third, fifth, and seventh rows show intensity profiles, and the second, fourth, sixth, and eighth rows exhibit the corresponding phase profiles.
The ninth row shows the same profiles as those in the eighth row if we drop the phase factor h .

ψl (r, z)= c l
(
1− a2)|l |/2e

−α2
(
w2

x x2
+w2

y y 2
)

× H|l |

[
−ia s αwx x + αwy y

√
1− a2

]
. (20)

In the far-field region, where z� z0 =max{z0x , z0y },
Eq. (15) simplifies to βx =wx and βy =wy . By substituting
these values in Eqs. (16) and (17), we can obtain Eqs. (19)
and (20) without doing the integral in Eq. (18).
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We relegate the special case εv = εg (a = 1) to Section 5.
Comparing Eqs. (19) and (9) or equivalently Eqs. (20) and (9)
shows that the Fourier transform of a GEG optical vortex leads
to an EEHG optical vortex with the characteristic parameters
ε= 1

εg
and a = εv

εg
. Using Eq. (20), intensity and phase profiles

in the far-field region, z= 5 m, are illustrated in the fifth and
sixth rows of Fig. 3, respectively. For checking out the Fourier
connection between GEG and EEHG optical vortices, compare
the fifth and seventh rows of Fig. 3 with the first and second rows
of Fig. 4, respectively.

At this point, we would like to caution against a potential
pitfall. As one of the introduced beam families, GEG, say,
transforms into the other over a long—on the wavelength
scale—propagation distance, one might wonder whether the
resulting EEHG family can then transform back into the GEG
one over another long propagation stretch in the same direction.
This, of course, is not true. The mathematical reason for this can
be traced to Eqs. (9) and (19). On comparing the two equations,
we can conclude that the complex amplitude distribution of a
GEG beam in the far zone is the same as that of an EEHG vortex
beam at the source only up to the phase factor h . The phase
factor carries information of the propagation length and the
coordinates of the observation plane via Eq. (12), which rules
out repeated generation of one vortex family from the other by
propagation ad infinitum.

4. NEAR- AND FAR-FIELD PROPAGATION OF
EEHG VORTEX BEAMS

On substituting from Eq. (9) into Eq. (11), the near-field evolu-
tion of an EEHG vortex beam is governed by the integral

ψn(r, z)= h
n∑

m=0

(
n
m

)
(−i s a)m

×

∫
+∞

−∞

e
−

(
x ′
qx

)2
−2iαx x ′

Hm

(
x ′

px

)
dx ′

×

∫
+∞

−∞

e
−

(
y ′
qy

)2
−2iαy y ′

Hn−m

(
y ′

p y

)
dy ′, (21)

where

1

q 2
x
=

1

p2
x
− i

π

zλ
=

1

p2
x

(
1− i

z0x

z

)
, (22a)

1

q 2
y
=

1

p2
y
− i

π

zλ
=

1

p2
y

(
1− i

z0y

z

)
. (22b)

By defining the following dimensionless parameters:
X ′ = x ′

qx
, Y ′ = y ′

q y
, X =−iαqx x , Y =−iαq y y , γx =

qx
px

,

andγy =
q y
p y

, Eq. (21) reduces to

ψn(r, z)= hqx q y e (X 2
+Y 2)

n∑
m=0

(
n
m

)
(−i s a)m

×

∫
+∞

−∞

dX ′e−(X
′
−X )2 Hm

(
γx X ′

)
×

∫
+∞

−∞

dY ′e−(Y
′
−Y )2 Hn−m

(
γy Y ′

)
. (23)

Now using the following reference integral [32]:∫
+∞

−∞

e−(x
′
−x )2 Hn(γ x ′)dx ′ =

√
π
(
1− γ 2

) n
2 Hn

(
γ x√

1− γ 2

)
,

(24)
we obtain the expression

ψn(r, z)= hπqx q y
(
1− γ 2

y

) n
2 e X 2

+Y 2
n∑

m=0

(
n
m

)
(−i s γ )m

× Hm

(
γx X√
1− γ 2

x

)
Hn−m

 γy Y√
1− γ 2

y

 ,
(25)

where γ = a
√

1−γ 2
x

1−γ 2
y

. Here again by defining ξ = γx X
√

1−γ 2
x

and

η=
γy Y
√

1−γ 2
y

and using Eq. (A2), Eq. (25) can be rewritten as

follows:

ψn(r, z)= hπqx q y
[(

1− γ 2
y

)
− a2(1− γ 2

x

)]n/2
e X 2
+Y 2

× Hn

(
−i s γ ξ + η√

1− γ 2

)
.

(26)

The first and second rows of Fig. 4 show the intensity and
phase profiles of the EEHG beams with n = 3, s =+1, and
px = 0.2 mm at the source, z= 0, as the values of a and ε are
varied. We visualize the near-field evolution of these beams at
z= 50 cm and z= 1 m in the third to sixth rows of the figure.

We can obtain the far-field distribution of an EEHG vortex
beam by substituting from Eq. (9) into Eq. (18). By defin-
ing the following dimensionless parameters: X =−iα px x ,
Y =−iα p y y , X ′ = x ′

px
, and Y ′ = y ′

p y
, the result can be

expressed as

ψn(r, z)= h px p y e (X 2
+Y 2) ×

n∑
m=0

(−i s a)m
(

n
m

)

×

∫
∞

−∞

dX ′e−(X
′
−X )2 Hm(X ′)

×

∫
∞

−∞

dY ′e−(Y
′
−Y )2 Hn−m(Y ′). (27)
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Using the following reference integral [32]:∫
∞

−∞

e−(x
′
−x )2 Hn(x ′)dx ′ =

√
π2n x n, (28)

Eq. (28) leads to

ψn(r, z)= 2nπ px p y he (X 2
+Y 2)

n∑
m=0

(
n
m

)
(−i s a X )mY n−m .

(29)
Now invoking Newton’s binomial expansion, we arrive at

ψn(r, z)= hπ px p y (−2i s a)n(X + iY/a)ne X 2
+Y 2

, (30)

and consequently

ψn(r, z)= An(ax + i s εy )ne
−α2

(
p2

x x2
+p2

y y 2
)
, (31)

where An = hπ px p y (−2i s α px )
n and ε=

p y
px

. Comparing
Eq. (31) and the general form of GEG vortices, Eq. (2), we can
conclude that the far-field intensity distribution of an EEHG
vortex is identical to the GEG vortex intensity at the source,
provided the ellipticity factors are identified as εv = a

ε
and

εg =
1
ε
. This feature can be verified by comparing the seventh

row of Fig. 4 with the first row of Fig. 3. Further, by comparing
the ninth row of Fig. 4 and the second row of Fig. 3, Fourier
reciprocity between EEHG and GEG vortices can be observed.

It follows that, by applying the OAM and power conservation
on free-space propagation [35], the normalized OAM of any
EEHG vortex beam can be obtained by substituting εv = a

ε
and

εg =
1
ε

into Eq. (7). The result reads

`z =
n

ε
(
1− a2

) [a
(
1− ε2)

−
(
a2
− ε2) Pn−1(α)

Pn(α)

]
, (32)

where α = 1+a2

2a . We should mention that Eq. (32) breaks down
in the special case of a = 1 which we discuss separately in the

Fig. 5. (a) and (b) Ratio of the normalized OAM to topological
charge, `z/n in terms of ε and a for EEHG vortex beams using two
different scales. (c) and (d) The corresponding contour graphs.

following section. Using Eqs. (32) and (34), we can work out
the ratio of the normalized OAM to topological charge `z/n as
a function of ε and a . We depict the results graphically in Fig. 5.
As is seen in the figure, `z/n = 1 for ε= a , and hence the nor-
malized OAM is equal to the topological charge of the EEHG
vortex beam. The generation of this class of EEHG vortex beams
with ε= a has already been discussed in [31] by considering
the diffraction of a conventional vortex beam from an elliptical
aperture.

5. FOURIER-INVARIANT GEG AND EEHG
VORTEX BEAMS

Let us now focus on the particular case of GEGs with equal ellip-
ticity factors, εv = εg = ε. In this case, we can rewrite Eq. (2) as

ψl (r)=
(

x
wx
+ i s

y
wy

)|l |
e
−

(
x2

w2
x
+

y 2

w2
y

)
, (33)

It follows that the evaluation of `z with the aid of Eq. (7)
leads to uncertainty, as both the numerator and denominator
approach zero. Resolving the uncertainty, we obtain

`z = l
(
ε+ ε−1

2

)
, (34)

where ε= wy
wx

; see Eq. (12) of Ref. [19]. The near-field evo-
lution of an ellipticity-matched GEG can then be obtained
from Eqs. (16) or (17) by taking c l = πh( s βy

2wy
)lβxβy and

a(z)= ε βx
βy

. By the same token, we can determine the far-field

distribution of an ellipticity-matched GEG from Eq. (16)
by setting a = 1. Considering Eq. (A5), Eq. (19) for the
ellipticity-matched GEG reduces to

ψl (r, z)= πhwxwy (−i)|l |
(
αwx x + i s αwy y

)|l |
e−α

2(w2
x x 2
+w2

y y 2),

(35)
We display near- and far-field evolution of Fourier-invariant

GEG beams with λ= 532 nm, l = 3, wx = 0.2 mm, and
different ellipticity factors in Fig. 6. We can infer from the figure
that the far-field distribution of the ellipticity-matched GEG
is Fourier invariant up to a 90-deg rotation, which corresponds
to the inverted ellipticity factor, ε′ = 1/ε. We can verify this
feature by comparing the intensity profiles in the first row of
the figure, reading from left to right, with those in the fifth row,
reading from right to left. As well, we can compare the phase
profiles in rows two and seven.

We now turn to the EEHG vortex beams in the special case
a = 1. On substituting a = 1 into Eq. (9) and using Eq. (A5),
we obtain

ψn(r, 0)= (−2i)n
(

x
px
+ i s

y
p y

)n

e
−

(
x2

p2
x
+

y 2

p2
y

)
, (36)

which is an ellipticity-matched GEG. In other words, when
a = 1, an EEHG vortex beam and an ellipticity-matched GEG
are the same, and both of them are Fourier invariant. Therefore,
on taking ε= p y

px
, we can obtain their normalized OAM with

the aid of Eq. (35).
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Fig. 6. Near- and far-field evolution of Fourier-invariant GEG vortex beams with λ= 532 nm, l = 3,wx = 0.2 mm, and different ellipticity fac-
tors. The first, third, and fifth rows show intensity profiles, and the second, fourth, and sixth rows illustrate the corresponding phase profiles. The sev-
enth row exhibits the same profiles as the sixth row, where we dropped the overall phase factor h .

6. SUMMARY

We have explored the near-field evolution in free space and
far-field distribution of two families of optical vortex beams,
generalized elliptical Gaussian (GEG) and elegant elliptical
Hermite-Gaussian (EEHG). We have established a reciprocity
relation between the source and far-field distributions of the
fields of GEG and EEHG beam families. In particular, we have

shown that the source field distribution of one family is related
to the far-field distribution of the other by a Fourier transform.
Using the Fourier reciprocity of the GEG and EEHG vortex
beams, we have evaluated their orbital angular momenta. We
compared our evaluation with a direct method. We have found
a condition for the fields of the two beam families to become
Fourier-invariant. Our results may find applications to optical
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communications and imaging with structured light. In par-
ticular, our work informs the transformation of GEG beams
with different orbital angular momenta and ellipticities into
EEHG beams with the same orbital angular momenta and
different ellipticities, thereby introducing novel beam shapes.
Therefore, these beams can be employed for information encod-
ing and decoding in optical fibers, or for contrast or resolution
enhancement in optical microscopy.

APPENDIX A

Consider a Hermite polynomial of degree n, Hn(x ). We can
represent the polynomial as Hn(x )= (2x )n for n < 2 and
Hn(x )= (2x )n +O(x )n−2 for n ≥ 2, where O(x )n−2 denotes
a polynomial of degree n − 2. Further, considering α to be a
nonzero real variable, we have αn Hn(

x
α
)= (2x )n , provided

n < 2, and αn Hn(
x
α
)= (2x )n + αnO( x

α
)n−2 for n ≥ 2, where

O( x
α
)n−2 denotes a polynomial of ( x

α
) of degree n − 2. We can

then examine the behavior of αn Hn(
x
α
) in the limit α→ 0. It

follows that

lim
α→0

αn Hn

( x
α

)
= (2x )n . (A1)

Let us now recall the identity [29]

n∑
m=0

tm
(

n
m

)
Hm(ξ)Hn−m(η)=

(
1+ t2) n

2 Hn

(
tξ + η
√

1+ t2

)
.

(A2)
In the particular case of t =∓i , we must evaluate both sides

of Eq. (A2) in the limit t→∓i . The left-hand side then reads

n∑
m=0

(∓i)q
(

n
m

)
Hm(ξ)Hn−m(η), (A3)

whereas the right-hand side can be calculated by defining
α =
√

1+ t2 and χ =∓iξ + η=∓i(ξ ± iη), and using
Eq. (A1). The result is

lim
t→∓i

(
1+ t2) n

2 Hn

(
tξ + η
√

1+ t2

)
= lim
α→0

αn Hn

(χ
α

)
= 2nχn

= (∓2i)n(ξ ± iη)n .
(A4)

We have thus proven the following identity:

n∑
m=0

(∓i)m
(

n
m

)
Hm(ξ)Hn−m(η)= (∓2i)n(ξ ± iη)n . (A5)

APPENDIX B

We now derive a general expression for the normalized OAM
of any EEHG vortex beam by performing the integration in
Eqs. (3) and (4). On substituting the expression for ψn from
Eq. (9) into Eqs. (3) and (4), the OAM and power of an EEHG
vortex beam can be calculated. To this end, we require the
following integral [32]:

∫
∞

−∞

e−2x2
Hm(x )Hn(x )dx

=

{
0, m + n = odd,
(−1)bm/2c+bn/2c2

m+n−1
2 0

(
m+n+1

2

)
, m + n = even,

(B1)

where m and n are positive integers, b c denotes an integer part
function, and0 stands for a gamma function. Defining ε(m, n)
as

ε(m, n)=

+1, both of m and n are even,
−1, both of m and n are odd,
0, otherwise.

(B2)

Equation (B1) can be rewritten as follows:∫
∞

−∞

e−2x2
Hm(x )Hn(x )dx

= ε(m, n)(−1)b
m+n

2 c2
m+n−1

2 0

(
m + n + 1

2

)
. (B3)

Integrating by parts on the left-hand side of Eq. (B3), we
obtain∫

∞

−∞

xe−2x2
Hm(x )Hn(x )dx

= ε̃(m, n)
(m − n)

4
(−1)b

m+n
2 c2

m+n
2 0

(
m + n

2

)
, (B4)

where ε̃(m, n) is defined as

ε̃(m, n)=

+1, m is odd and n is even,
−1, m is even and n is odd,
0, otherwise.

(B5)

On substituting from Eq. (B3) into Eq. (4), we find that
the power of the EEHG vortex beam is given by the following
expression:

W = 2n−1(1+ a2)−n/2
px p y

n∑
p=0

n∑
q=0

a p+q Wp,q , (B6)

where

Wp,q = |ε(p, q)| (−1)
p−q

2

(
n
p

)(
n
q

)

× 0

(
2n − p − q + 1

2

)
0

(
p + q + 1

2

)
. (B7)

Next, writing the OAM as J z = Im{ J̃ z} and using Eqs. (B4)
and (B5), the following relation can be derived:

J̃ z = s n{(ε− ε
−1)

n∑
p=0

n∑
q=0

(p − q)J p,q

− 2ε−1
n−1∑
p=0

n∑
q=0

(n − p)J p,q − 2ε
n∑

p=1

n∑
q=0

p J p,q }.

(B8)
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Here,

s n =
2n

8

(
1+ a2)−n/2

px p y ,

J p,q = |ε̃(p, q)| a p+q (i)p−q
(

n
p

)(
n
q

)
(p − q)0p,q ,

where 0p,q = 0(
p+q

2 )0(n − p+q
2 ). Finally, using these results,

one can obtain the OAM of an EEHG vortex beam as a function
of ε and a parameters. For the power-independent OAM of the
EEHG vortex beam, for instance, the normalized OAM of the
beam can be evaluated as

`z =
Im{ J̃ z}

W
, (B9)

where W and J̃ z are obtained from Eqs. (B7) and (B8).
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